Communication

An unusual reaction of cyclopropenylphosphonium bromide with sodium polyphosphides - A novel approach to sodium 3,4,5-triphenyl-1, 2-diphosphacyclopentadienide

Ilya Bezkishko ${ }^{\text {a }}$, Vasily Miluykov ${ }^{\text {a,* }}$, Alexander Kataev ${ }^{\text {a }}$, Igor Litvinov ${ }^{\text {a }}$, Dmitry Krivolapov ${ }^{\text {a }}$, Oleg Sinyashin ${ }^{\text {a }}$, Evamarie Hey-Hawkins ${ }^{\text {b,1 }}$
${ }^{\text {a }}$ A.E. Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of Sciences, Arbuzov Street 8, Kazan 420088, Russia
${ }^{\mathrm{b}}$ Institut für Anorganische Chemie der Universität Leipzig, Johannisallee 29, Leipzig, Germany

A R T I C L E I N F O

Article history:

Received 17 June 2008
Received in revised form 23 July 2008
Accepted 4 August 2008
Available online 11 August 2008

Keywords:

Triphenylcyclopropenyl bromide
Phosphonium salt
Sodium polyphosphides
1,2-Diphosphacyclopentadienide anion

Abstract

1,2,3-Triphenylcyclopropenylphosphonium bromide reacts with sodium polyphosphides to give sodium 3,4,5-triphenyl-1,2-diphosphacyclopentadienide in high yield. © 2008 Elsevier B.V. All rights reserved.

1. Introduction

Phosphonium salts are useful reagents in organic synthesis [1] and have found broad application for the preparation of a variety of Wittig reagents, which are widely used for the conversion of ketones and aldehydes to alkenes [2]. Furthermore, cyclopropenylphosphonium cations react with different nucleophiles to give cyclic compounds such as furans [3] and cyclopentenones [4] due to intermolecular Wittig reactions. Ring-opening reactions of cyclopropene also take place in reactions with different amines [5,6], aryl magnesium bromides [7], and phosphites [8]. We are interested in the reactivity of phosphonium salts of cyclopropenes toward sodium polyphosphides as a possible route to sodium 1,2-diphosphacyclopentadienide [9], which was recently obtained by reaction of cyclopropenyl nickel complexes with different polyphosphides such as NaP_{5} [10] and $\mathrm{Na}_{3} \mathrm{P}_{7}$ [11].

We have found that triphenylcyclopropenyl bromide reacts with tertiary phosphines to form novel phosphonium salts $\mathbf{1}$ in high yield (Eq. (1))

[^0]

The structure of $\mathbf{1}$ was confirmed by NMR spectroscopy, and additionally by X-ray analysis for $\mathbf{1 b}$ (see Fig. 1). To the best of our knowledge, $\mathbf{1 b}$ is the first structurally characterized cyclopropenylphosphonium salt. The cyclopropenyl ring and the two phenyl rings at the C-C double bond of the cyclopropenyl ring are almost coplanar. The P1-C1 bond length $(1.824(4) \AA$) is slightly longer than a $\mathrm{P}-\mathrm{C}$ single bond. The C-C distances of the cyclopropenyl ring in 1b differ: one bond is short ($\mathrm{C}=\mathrm{C}, \mathrm{C} 2-\mathrm{C} 31.315(5) \AA$) and two are
long (C1-C3, 1.526(5) and C1-C2 1.517(5) Å), in contrast to [cyclo$\left.(\mathrm{CPh})_{3}\right] \mathrm{ClO}_{4}$ [12] and [cyclo-($\left.\mathrm{CNMe}_{2}\right)_{3}$] ClO_{4} [13], in which all three $\mathrm{C}-\mathrm{C}$ bonds are equivalent (1.373(5) and 1.363(7), respectively).

No aromaticity of cyclopropene ring of $\mathbf{1}$ was found in solution, as is apparent from the ${ }^{13} \mathrm{C}$ NMR spectrum, which exhibits a doublet at ca. 31 ppm for C^{1}, characteristic for an sp^{3}-hybridized carbon atom.

Phosphonium salts 1a and 1b were treated with mixture of polyphosphides, obtained in situ from sodium and white phosphorus and containing mainly NaP_{5} and $\mathrm{Na}_{3} \mathrm{P}_{7}$ [14]. Only the signals of sodium 3,4,5-triphenyl-1,2-diphosphacyclopentadienide (2) and the tertiary phosphine were detected in the ${ }^{31} \mathrm{P}$ NMR spectrum of the reaction mixture after refluxing for 3 h (Eq. (1)).

Compound $\mathbf{2}$ can easily be isolated from the reaction mixture by filtration. After washing with n-hexane 2 is obtained in good purity and can be used for following reactions without further purification.

So reaction of phosphonium salts $\mathbf{1}$ with sodium polyphosphides affords a new convenient method for preparation of $\mathbf{2}$. In contrast, no sodium 3,4,5-triphenyl-1,2-diphosphacyclopentadienide $\mathbf{2}$ was formed in reaction of 1,2,3-triphenylcyclopropenyl bromide with sodium polyphosphides without tertiary phosphines or at presence of catalytic amount tertiary phosphines. Recently we have proposed that the first stage of formation of sodium 3,4,5-tri-phenyl-1,2-diphosphacyclopentadienide in reaction of cyclopropenyl complexes of nickel with sodium polyphosphides is a nucleophilic attack polyphosphide-anion to one of carbon of C_{3}-ring [11,15]. The absence of aromaticity of cyclopropene ring of $\mathbf{1}$ allow to explain the difference of reactivity of $1,2,3$-triphenylcyclopropenyl bromide and phosphonium salts $\mathbf{1}$ towards sodium polyphosphides - the positive charged carbon atom C^{1} facilities the nucleophilic attack of polyphosphide-anion to one of carbon of cyclopropenilium ring.

In summary we have found that 1,2,3-triphenylcyclopropenylphosphonium salts react cleanly with sodium polyphosphides to give sodium 3,4,5-triphenyl-1,2-diphosphacyclopentadienide in good yield.

Fig. 1. Molecular structure of 1b. Hydrogen atoms, bromide anion, and solvent omitted for clarity; thermal ellipsoids drawn at 50% probability. Selected bond lengths (\AA) and angles (${ }^{\circ}$): C1-C2 1.517(5), C1-C3 1.526(5), C2-C3 1.315(5), P1-C1 1.824(4), P1- C22 1.777(4), P1-C23 1.774(4), P1-C24 1.793(4); C2-C1-C4 121.3(3), C3-C1-C4 121.9(3), C2-C1-C3 51.2(2), C3-C2-C1 64.8(3), C1-C3-C2 64.0(3), C1-P1-C23 112.48(18), C1-P1-C22 108.6(2), C1-P1-C24 108.8(2).

2. Experimental

All reactions and manipulations were carried out under dry pure N_{2} in standard Schlenk apparatus. All solvents were distilled from sodium/benzophenone and stored under nitrogen before use. The NMR spectra were recorded on a Bruker AVANCE DRX 400 or an MSL-400 (${ }^{1} \mathrm{H} 400 \mathrm{MHz},{ }^{31} \mathrm{P} 121.7 \mathrm{MHz},{ }^{13} \mathrm{C} 100.6 \mathrm{MHz}$). SiMe_{4} was used as internal reference for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts, and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ as external reference for ${ }^{31} \mathrm{P}$. $\mathrm{PMe}_{2} \mathrm{Ph}$ [16] and $\left[\mathrm{C}_{3} \mathrm{Ph}_{3}\right] \mathrm{Br}$ [17] were prepared according to literature procedures.

2.1. (1,2,3-Triphenylcyclopropenyl)triphenylphosphonium bromide (1a)

A mixture of triphenylcyclopropenyl bromide $(0.34 \mathrm{~g}$, $0.01 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(0.26 \mathrm{~g}, 0.01 \mathrm{mmol})$ in THF (20 mL) was refluxed for 3 h . The precipitate was collected by filtration and washed with cold THF to give 1,2,3-triphenylcyclopropenyl)triphenylphosphonium bromide (1a) as white crystals ($0.54 \mathrm{~g}, 90 \%$). M.p.: $169^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=7.38\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{Ph},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.82 \mathrm{~Hz}\right.$), 7.3 (d , $\left.2 \mathrm{H}, \mathrm{Ph},{ }^{3} \mathrm{JHH}_{\mathrm{H}}=6.9 \mathrm{~Hz}\right), 7.42-7.54(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ph}), 7.62(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ph}$, $\left.{ }^{3} J_{\mathrm{HH}}=7.02 \mathrm{~Hz}\right), 7.69\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ph},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.34 \mathrm{~Hz}\right), 7.79(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ph}$, $\left.{ }^{3} J_{\mathrm{HH}}=7.34 \mathrm{~Hz}\right), \quad 7.94\left(\mathrm{~d}, 8 \mathrm{H}, \quad\right.$ Ph, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.82 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=30.4$ (s). ${ }^{13} \mathrm{C}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=30.04$ (d, C1, $\left.{ }^{1} J_{\mathrm{PC}}=74.5 \mathrm{~Hz}\right), 112.33(\mathrm{C}=\mathrm{C}), 121.24(p-\mathrm{C}, \mathrm{Ph}-\mathrm{C} 1), 121.69(p-\mathrm{C}$, Ph-P), 123.55 ($\mathrm{d}, \quad m-\mathrm{C}, \mathrm{Ph}-\mathrm{P},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=2.4 \mathrm{~Hz}$), $127.23(p-\mathrm{C}, \mathrm{Ph})$, 127.64 ($p-\mathrm{C}, \mathrm{Ph}$), 128.46 ($m-\mathrm{C}, \mathrm{Ph}-\mathrm{C} 1$), 129.04 ($m-\mathrm{C}, \mathrm{Ph}$), 129.11 ($m-\mathrm{C}, \mathrm{Ph}$), 129.13 (o-C, Ph-C1), 129.53 (o-C, Ph), 129.56 (o-C, Ph), 130.33 (ipso-C, Ph), 131.55 (ipso-C, Ph), 131.61 (d, o-C, Ph-P, ${ }^{2} J_{\mathrm{CP}}=9.61 \mathrm{~Hz}$), 133.5 (ipso-C, Ph-C1), 133.45 (d, ipso-C, Ph-P, ${ }^{1} J_{\mathrm{CP}}=25.2 \mathrm{~Hz}$). Anal. Calc. for $\mathrm{C}_{39} \mathrm{H}_{30} \mathrm{BrP}$ (609.54): C, 76.85 ; H , 4.96; P, 5.08. Found: C, 76.62; H, 4.86; P, 5.19\%.

2.2. (1,2,3-Triphenylcyclopropenyl)dimethylphenylphosphonium bromide (1b)

Compound ($\mathbf{1 b}$) was prepared in a similar manner to $\mathbf{1 a}$ and was obtained as white crystals in 85% yield. M.p.: $144^{\circ} \mathrm{C}$. Crystals suitable for X-ray analysis were growth from a saturated solution of $\mathbf{1 b}$ in CHCl_{3} at $-30^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): ~ \delta=2.39\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{Me},{ }^{2} \mathrm{~J}_{\mathrm{HP}}=13.5 \mathrm{~Hz}\right), 7.34$ $\left(\mathrm{d}, 3 \mathrm{H}, \mathrm{Ph},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.0 \mathrm{~Hz}\right), 7.46\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ph},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=6.9 \mathrm{~Hz}\right), 7.49-7.58$ $(\mathrm{m}, 8 \mathrm{H}, \mathrm{Ph}), 7.69\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ph},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.15 \mathrm{~Hz}\right), 7.75(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ph}$, $\left.{ }^{3} J_{\mathrm{HH}}=7.52 \mathrm{~Hz}\right), 7.77\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ph},{ }^{3} J_{\mathrm{HH}}=7.15 \mathrm{~Hz}\right), 7.82(\mathrm{~d}, 4 \mathrm{H}, \mathrm{Ph}$, ${ }^{3} J_{\mathrm{HH}}=6.60 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}$ NMR ($\left.\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right): \delta=29.8 \quad(\mathrm{~s}) .{ }^{13} \mathrm{C}$ NMR $\left(\left[\mathrm{D}_{6}\right] \mathrm{DMSO}\right) \quad \delta=8.02\left(\mathrm{~d}, \quad \mathrm{Me},{ }^{1} \mathrm{~J}_{\mathrm{CP}}=52.9 \mathrm{~Hz}\right), 31.04(\mathrm{~d}, \mathrm{C} 1$, $\left.{ }^{1} J_{\mathrm{CP}}=74.5 \mathrm{~Hz}\right), 112.46(\mathrm{C}=\mathrm{C}), 121.27(p-\mathrm{C}, \mathrm{Ph}-\mathrm{C} 1), 121.8(p-\mathrm{C}, \mathrm{Ph}-$ P), $124.59\left(\mathrm{~d}, m-\mathrm{C}, \mathrm{Ph}-\mathrm{P},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=2.4 \mathrm{~Hz}\right), 128.35(p-\mathrm{C}, \mathrm{Ph}), 128.46$ ($p-\mathrm{C}, \mathrm{Ph}$), 128.94 ($m-\mathrm{C}, \mathrm{Ph}-\mathrm{C} 1$), 129.25 ($m-\mathrm{C}, \mathrm{Ph}$), 129.35 ($m-\mathrm{C}$, Ph), 129.54 (o-C, Ph-C1), 129.64 (o-C, Ph), 129.97 (o-C, Ph), 130.83 (ipso-C, Ph), 131.21 (ipso-C, Ph), 131.79 (d, o-C, Ph-P, ${ }^{2} J_{\mathrm{CP}}=9.61 \mathrm{~Hz}$), 134.1 (ipso-C, Ph-C1), 136.56 (d, ipso-C, Ph-P, ${ }^{1} J_{\mathrm{CP}}=25.2 \mathrm{~Hz}$). Anal. Calc. for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{BrP}(485.40)$: C, $71.76, \mathrm{H}$, 5.40, P, 6.38. Found: C, 71.10, H, 5.24, P, 6.57\%.

2.3. Sodium bis(diglyme) 1,2-diphospha-3,4,5triphenylcyclopentadienide (2)

A mixture of $\mathrm{Na}(0.46 \mathrm{~g}, 2 \mathrm{mmol})$ and $\mathrm{P}_{4}(1.24 \mathrm{~g}, 1 \mathrm{mmol})$ in diglyme (40 mL) was refluxed for 6 h to give a mixture of sodium polyphosphides. The reaction mixture was cooled to RT, 1a $(0.6 \mathrm{~g}$, 1 mmol) was added, and the mixture was refluxed for an additional 3 h . The reaction mixture was filtered, and the solid was washed twice with diglyme. The solvent was evaporated in vacuum and
the remaining residue was washed three times with n-hexane $(20 \mathrm{~mL})$ to give $2(0.4 \mathrm{~g}, 65 \%)$ as a brown powder. M.p.: $125^{\circ} \mathrm{C}$ (decomp).
${ }^{1} \mathrm{H}$ NMR ([$\left.\mathrm{D}_{8}\right]$ thf): $\delta=3.15$ ($\mathrm{s}, 12 \mathrm{H}, \mathrm{MeO}$), $3.30(\mathrm{t}, 8 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{HH}}=5.1 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 3.38\left(\mathrm{t}, 8 \mathrm{H},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=5.1 \mathrm{~Hz}, \mathrm{OCH} 2\right), 6.63(\mathrm{t}, 2 \mathrm{H}$, ${ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, p-\mathrm{CH}$ in Ph), 6.75 (br s, $9 \mathrm{H}, \mathrm{Ph}$), 6.93 (br d, 4 H , ${ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, o-\mathrm{CH}$ in Ph). ${ }^{13} \mathrm{C}$ NMR ($\left.\left[\mathrm{D}_{8}\right] \mathrm{thf}\right): \delta=58.07$ (s, MeO), $69.69\left(\mathrm{~s}, \mathrm{OCH}_{2}\right), 71.39\left(\mathrm{~s}, \mathrm{OCH}_{2}\right), 121.77(\mathrm{~s}, \mathrm{~m}-\mathrm{C}, \mathrm{Ph}), 122.96(\mathrm{~s}$, $m-\mathrm{C}, \mathrm{Ph}$), 125.91 ($\mathrm{s}, \mathrm{p}-\mathrm{C}, \mathrm{Ph}$), 126.20 ($\mathrm{s}, \mathrm{p}-\mathrm{C}, \mathrm{Ph}$), 129.73 (t, $\left.{ }^{2} J_{\mathrm{CP}}=4.9 \mathrm{~Hz}, i p s o-\mathrm{C}, \mathrm{Ph}\right), 131.93$ (s, ipso-C, Ph), 143.88 (s,o-C, Ph), 144.27 ($\mathrm{s}, \mathrm{o}-\mathrm{C}, \mathrm{Ph}$), 147.02 ($\mathrm{t},{ }^{2} \mathrm{~J}_{\mathrm{CP}}=8.9 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ph}$), 161.61 (ps.t, ${ }^{1} J_{\mathrm{CP}}+{ }^{2} \mathrm{~J}_{\mathrm{CP}}=28.5 \mathrm{~Hz}, \mathrm{C}-\mathrm{Ph}$). ${ }^{31} \mathrm{P}$ NMR ($\left[\mathrm{D}_{8}\right]$ thf): $\delta=190.0$ (s). Anal. Calc. for $\mathrm{C}_{33} \mathrm{H}_{43} \mathrm{NaO}_{6} \mathrm{P}_{2}$ (620.60): C, 63.86; H, 6.98; P, 9.98. Found: C, 64.10; H, 7.04; P, 9.57\%.

2.4. X-ray analysis

Data were collected on a Bruker Smart Apex II CCD diffractometer using graphite-monochromated Mo $K \alpha(\lambda=0.71073 \AA$) radiation. $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{BrP} \cdot 2 \mathrm{CHCl}_{3} ; M=724.11$; colorless prism; crystal size $0.30 \times 0.30 \times 0.30 \mathrm{~mm} ; \quad T=273 \mathrm{~K}$; triclinic; space group $P \overline{1}$; $a=9.549(2) \mathrm{pm}, \quad b=12.301(4) \mathrm{pm}, \quad c=14.997(7) \mathrm{pm}, \quad \alpha=104.28$ $(3)^{\circ}, \quad \beta=92.65(3)^{\circ}, \quad \gamma=93.28(3)^{\circ} ; \quad V=1701.0(10) \mathrm{nm}^{3} ; \quad Z=2$; $\rho_{\text {calcd }}=1.414 \mathrm{mg} / \mathrm{m}^{3} ; F(000)=732 ; q$ range for data collection $2.65-26.29^{\circ} ; 0 \leqslant h \leqslant 11 ;-15 \leqslant k \leqslant 15 ;-18 \leqslant l \leqslant 18 ; 6796$ reflections collected; 6404 independent reflections $\left[R_{(\text {int })}=0.0236\right]$; $F_{2}=0.961$; final R indices $[I>2 \sigma(I)]: R_{1}=0.0609 ; w R_{2}=0.0795 ; R$ indices (all data) $R_{1}=0.1261 ; ~ w R_{2}=0.0956$; largest difference peak/hole: $30.436 /-0.380$ e Å. Data were corrected for absorption using sadabs [18] program $\left(\mu(\mathrm{Mo} \mathrm{K} \alpha)=1.749 \mathrm{~mm}^{-1}\right.$). All nonhydrogen atoms were refined anisotropically. The hydrogen atoms were calculated and refined as riding atoms. Data collection images were indexed, integrated, and scaled using the apex2 data reduction package [19]. Structure solution and refinement with SIR [20], shelxı97 [21], wingx [22] program. Pictures were generated with ortep3 for Windows [23]. One of the two molecules of trichloromethane solvent is disordered in the crystal and was refined as two equivalent molecules with the same occupancy value of 0.5 .

Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.

Acknowledgments

The authors thank the Deutsche Forschungsgemeinschaft and RFBR (07-03-91556) for financial support of this work.

References

[1] J.I.G. Cadogan, Organophosphorus, Reagents in Organic Synthesis, AP, New York, 1979.
[2] D.H. Valentine Jr., J.H. Hillhouse, Synthesis (2003) 317-334.
[3] W.G. Dauben, D.J. Hart, Tetrahedron Lett. (1975) 4353-4356.
[4] J.P. Marlno, R.C. Landick, Tetrahedron Lett. (1975) 4531-4534.
[5] S. Yoneda, H. Kojima, Bull. Chem. Soc. Jpn. 61 (1988) 1793-1794.
[6] H. Kojima, K. Ozaki, N. Matsumura, H. Inoue, J. Heterocyclic Chem. 27 (1990) 1845-1846.
[7] H. Kojima, K. Ozaki, N. Matsumura, H. Inoue, Bull. Chem. Soc. Jpn. 64 (1991) 2298-2299.
[8] H. Kojima, K. Ozaki, N. Matsumura, H. Inoue, J. Chem. Res. Synop. (1991) 324325.
[9] N. Maigrot, N. Avarvari, C. Charrier, F. Mathey, Angew. Chem., Int. Ed. Engl. 34 (1995) 590-592.
[10] V. Miluykov, A. Kataev, O. Sinyashin, P. Lönnecke, E. Hey-Hawkins, Organometallics 24 (2005) 2233-2236.
[11] V. Miluykov, A. Kataev, O. Sinyashin, E. Hey-Hawkins, Russ. Chem. Bull. 56 (2007) 304-306.
[12] M. Sundaralingam, L.H. Jensen, J. Am. Chem. Soc. 88 (1966) 198-204.
[13] A.T. Ku, M. Sundaralingam, J. Am. Chem. Soc. 94 (1972) 1688-1692.
[14] V. Miluykov, A. Kataev, O. Sinyashin, E. Hey-Hawkins, Russ. Chem. Bull. 55 (2006) 1297-1299.
[15] V. Miluykov, A. Kataev, O. Sinyashin, E. Hey-Hawwkins, Phosphorus, Sulfur, Silicon Relat. Elem. 183 (2008) 509-513.
[16] P.D. Bartlett, G. Meguerian, J. Am. Chem. Soc. 78 (1956) 3710-3715.
[17] R. Breslow, H. Won Chang, J. Am. Chem. Soc. 83 (1961) 2367-2375.
[18] G.M. Sheldrik, sADABS, Program for Empirical X-ray Absorption Correction, Bruker-Nonis, 1990-2004.
[19] apex2 (Version 2.1), Saintplus Data Reduction and Correction Program (Version7.31A), Bruker Advanced X-ray Solutions, Bruker AXS Inc., Madison, Wisconsin, USA, 2006.
[20] A. Altomare, G. Cascarano, C. Giacovazzo, D. Viterbo, Acta Crystallogr. Sect. A 47 (1991) 744-748.
[21] G.M. Sheldrick, shelxi97 a Computer Program for Crystal Structure Determination, University of Göttingen, 1997.
[22] L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837-838.
[23] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.

Supplementary material

CCDC 666891 contains the supplementary crystallographic data for $\mathbf{1 b}$. These data can be obtained free of charge from The

[^0]: * Corresponding author. Fax: +7 8432752253.

 E-mail addresses: miluykov@iopc.knc.ru (V. Miluykov), hey@rz.uni-leipzig.de (E. Hey-Hawkins).
 ${ }^{1}$ Fax: +493419739319.

